Tverberg Partitions and Borsuk-ulam Theorems

نویسندگان

  • K. S. Sarkaria
  • K. S. SARKARIA
چکیده

An N-dimensional real representation E of a finite group G is said to have the “Borsuk-Ulam Property” if any continuous G-map from the (N + 1)-fold join of G (an N-complex equipped with the diagonal G-action) to E has a zero. This happens iff the “Van Kampen characteristic class” of E is nonzero, so using standard computations one can explicitly characterize representations having the B-U property. As an application we obtain the “continuous” Tverberg theorem for all prime powers q, i.e., that some q disjoint faces of a (q − 1)(d + 1)-dimensional simplex must intersect under any continuous map from it into affine d-space. The “classical” Tverberg, which makes the same assertion for all linear maps, but for all q, is explained in our set-up by the fact that any representation E has the analogously defined “linear B-U property” iff it does not contain the trivial representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theorems of Borsuk-ulam Type for Flats and Common Transversals

In this paper some results on the topology of the space of k-flats in Rn are proved, similar to the Borsuk-Ulam theorem on coverings of sphere. Some corollaries on common transversals for families of compact sets in Rn, and on measure partitions by hyperplanes, are deduced.

متن کامل

Borsuk-Ulam Implies Brouwer: A Direct Construction

The Borsuk-Ulam theorem and the Brouwer fixed point theorem are well-known theorems of topology with a very similar flavor. Both are non-constructive existence results with somewhat surprising conclusions. Most topology textbooks that cover these theorems (e.g., [4], [5], [6]) do not mention the two are related—although, in fact, the Borsuk-Ulam theorem implies the Brouwer Fixed Point Theorem. ...

متن کامل

Combinatorial Proofs of Some Theorems in Algebraic Topology

Two important theorems in algebraic topology are the Brouwer Fixed Point theorem and the Borsuk-Ulam theorem. The theorems require the development of homology in their standard proofs. However, each theorem has an equivalent combinatorial result involving triangulating the relevant surface and coloring the vertices of the triangulation. Then by taking the limit of a sequence of finer triangulat...

متن کامل

Borsuk-Ulam Theorems for Complements of Arrangements

In combinatorial problems it is sometimes possible to define a G-equivariant mapping from a space X of configurations of a system to a Euclidean space Rm for which a coincidence of the image of this mapping with an arrangement A of linear subspaces insures a desired set of linear conditions on a configuration. BorsukUlam type theorems give conditions under which no G-equivariant mapping of X to...

متن کامل

The Borsuk-Ulam-property, Tucker-property and constructive proofs in combinatorics

This article is concerned with a general scheme on how to obtain constructive proofs for combinatorial theorems that have topological proofs so far. To this end the combinatorial concept of Tucker-property of a finite group G is introduced and its relation to the topological Borsuk-Ulam-property is discussed. Applications of the Tucker-property in combinatorics are demonstrated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997